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In the field of traffic flow studies, compulsive lane-changing refers to lane-changing (LC) behaviors due to traffic rules
or bad road conditions, while free LC happens when drivers change lanes to drive on a faster or less crowded lane. LC
studies based on differential equation models accurately reveal LC influence on traffic environment. This paper presents a
second-order partial differential equation (PDE) model that simulates both compulsive LC behavior and free LC behavior,
with lane-changing source terms in the continuity equation and a lane-changing viscosity term in the momentum equation.
A specific form of this model focusing on a typical compulsive LC behavior, the ‘off-ramp problem’, is derived. Numerical
simulations are given in several cases, which are consistent with real traffic phenomenon.

Keywords: traffic flow model, compulsive lane-changing, off-ramp, fluid dynamics, numerical simulation
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1. Introduction

As an important driving behavior, lane-changing behavior
(LC) has gained increasing attention in the past few years, and
has become a remarkable problem in traffic flow studies. Re-
cent papers revealed that LC is crucial for traffic relaxation[1,2]

and safety.[3–7] Therefore, researches on LC problems may
carry great significance.

Toledo,[8] Moridpour et al.,[9] and Zheng[10] have re-
viewed LC, which categorized LC behavior as free LC (i.e.,
discretionary LC) and compulsive LC (i.e., mandatory LC),
according to how the decision of LC is made. Free LC is
executed to improve driving conditions, such as changing to
a faster lane to achieve higher speed, and changing to a less
crowded lane to be more comfortable. Compulsive LC is ex-
ecuted when the driver has to leave the current lane due to
certain traffic rules or bad road conditions, for example, the
off-ramp problem: a driver who intends to leave the main road
from the off-ramp ahead always moves into the right-hand lane
or the auxiliary lane in advance to prepare for leaving (in right-
driving traffics). This problem is modeled and studied in this
paper.

In traffic flow studies, the continuum model is an effec-
tive tool and yields good results of studies about how driving
behaviors affect the surroundings. Lighthill and Whitham,[11]

and Richards[12] respectively originated the model by apply-
ing the continuity equation in fluid mechanics to traffic flow,
known as the LWR theory. Payne built a second-order contin-
uum model,[13] which has a similar form to the Navier-Stokes

equation. Let ρ be the traffic density, u be the speed, then

∂ρ

∂ t
+u

∂ρ

∂x
+ρ

∂u
∂x

= Φ(x, t),

∂u
∂ t

+u
∂u
∂x

+
a2

ρ

∂ρ

∂x
=

1
Tr

(Ue−u), (1)

where Φ(x, t) is the traffic source term, a is the sonic speed,
Tr is the time delay parameter, and Ue is the equilibrium speed
function. Later, various models were built based on Payne’s
model.[14–17] Papageogiou’s model adds a term to the momen-
tum equation to simulate the influence of the ramp on the main
road traffic:[14]

∂u
∂ t

+u
∂u
∂x

+
a2

ρ

∂ρ

∂x
=

1
Tr

(Ue−u)−δ
uΦ

ρ
, (2)

where Φ is the on-ramp traffic flow per unit width of the ramp,
and δ ∈ [0,1], is a dimensionless coefficient related to the
speed difference between the ramp and the main road.

In the past few years, several continuum traffic models on
free LC have been published. Laval and Daganzo adopted the
speed difference between adjacent lanes to construct,[7] while
Zhu and Wu[18] used the density difference instead. Ko et
al.[19] integrated the two forms of the source term to fully char-
acterize the free LC phenomenon. For a section with n lanes,
numbered by l = 1,2, . . . ,n from left to right, the continuum
equation and momentum equation of Ko et al.’s model are

∂ρl

∂ t
+ul

∂ρl

∂x
+ρl

∂ul
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= ∑

l′=l±1
Φfree,l′l , (3)
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+

a2

ρl

∂ρl
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=

1
Tr

(Ue−u)l + fviscous,l , (4)
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(Note that terms where l′ exceeds the range of l should not be
included in the summation ∑

l′=l±1
Φfree,l′l , and likewise here-

inafter), where Φfree,l′l is the free LC source term, defined as
the number of vehicles that change from the l′-th lane to the
l-th lane due to free LC per hour per kilometer, and is deter-
mined as

Φfree,l′l = C1 [ρl′ul′max(ul−ul′ ,0)+ρlul min(ul−ul′ ,0)]

+C2 [ρl′max(ρl′ −ρl ,0)+ρl min(ρl′ −ρl ,0)] . (5)

In the momentum equation (4), fviscous,l is the viscosity term,
derived through the analogy between free LC behavior and the
viscosity of fluids. Its expression is

fviscous,l =
1
ρl

∑
l′=l±1

Φfree,l′l


(uf−ul), ρl ≤ 0.2ρjam,(
− 1

4
uf−ul

)
, ρl > 0.2ρjam.

(6)

However, the LC models taking into account both com-
pulsive LC and free LC behaviors rarely appear in the existing
literature. This paper presents such a second-order differential
equation model, derived based on Ko et al.’s free LC model.
The remainder of this paper is organized as follows. In Sec-
tion 2, a new continuum traffic model addressing compulsive
LC and free LC together is derived. In Section 3, a numer-
ical discretization method of the model is given. Numerical
results on low-/high-density traffic and non-equilibrium traffic
are presented in Section 4. Section 5 summarizes the results
in the whole paper, and presents a prospect of further work.

2. Model
2.1. Derivation

Compulsive LC behaviors affect the density of the sur-
rounding traffic environment, which can be depicted by adding
a source term Φcmpl,l , the compulsive LC rate, to the right-
hand side of the free LC continuity equation (3). Φcmpl,l is
defined as the number of vehicles that leave the l-th lane due
to compulsive LC per hour per kilometer. A typical example
of Φcmpl,l is given by Eq. (8) below.

The vehicles that conduct compulsive LC may have dif-
ferent speeds from the target lane’s average speed, which will
change the speed profile nearby, and the free LC momentum
equation (4) should be changed accordingly. Using Papageo-
giou’s idea in his single-lane traffic model with ramp[14,15] for
reference, we consider the influence of compulsive LC on mo-
mentum to be proportional to local speed and inversely pro-
portional to local density, so we add a term (ul/ρl)/Φcmpl,l to
the right-hand side of the momentum equation.

To summarize, for an n-lane road section, the partial dif-
ferential equation (PDE) traffic model with considering both

free and compulsive LC is as follows:
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Tr
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ul
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Φfree,l′l =C1 [ρl′ul′max(ul−ul′ ,0)+ρlul min(ul−ul′ ,0)]
+C2 [ρl′max(ρl′ −ρl ,0)+ρl min(ρl′ −ρl ,0)] ,

fviscous,l =
1
ρl

∑
l′=l±1

Φfree,l′l

·


(uf−ul), ρl ≤ 0.2ρjam,(
− 1

4
uf−ul

)
, ρl > 0.2ρjam.

(7)

where ρ l and ul are the traffic density and the speed on lane l
respectively; a is the sonic speed and Tr is the time delay pa-
rameter from Payne’s model; Ue(ρ) is the equilibrium speed
function; Φfree,l′l and Φcmp,l are the free LC rate and compul-
sive LC rate, which are both in units of veh/(h ·km); fviscous,l is
the LC viscosity from Ko et al.’s model[19] in units of (km/h2;
C1 is a constant parameter that addresses the effect of speed
difference between adjacent lanes on the free LC rate, while
C2 is a constant parameter that addresses the influence of den-
sity difference on the free LC rate, C1 and C2 are in units of
h/km2 and (km/h)/veh respectively; uf is the free flow speed;
ρ jam is the jam density.

In the off-ramp problem, attraction of the off-ramp ahead
is the only considered compulsive LC factor. Thus the compul-
sive LC source term (namely, the compulsive LC rate) Φcmpl,l

in Eq. (7) is given as

Φcmpl,l = Φramp,l−Φramp,l−1, (8)

where Φramp,l represents the number of vehicles that change
from lane l to the adjacent right-hand lane per unit time and
length due to the off-ramp ahead.

From the inspection of real traffic phenomenon, we find
that the compulsive LC intensity has a general pattern: from
the inlet to the upper stream of an off-ramp, the compulsive
LC rate keeps increasing up to a peak at some point before the
off-ramp, after which it decreases to zero at the point of the
off-ramp. This rate then remains zero, because no compulsive
LC behavior happens downstream of the off-ramp. According
to this inspection, the expression of Φramp,l can be given as

Φramp,l = αlA
{

sech(γ(x− x0)), x≤ x0,
sech(β (x− x0)), x > x0,

(γ � β ,α1 < α2 < · · ·< αn), (9)
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where α l is a dimensionless parameter, representing the rela-
tive intensity of occurrence for compulsive LC on lane l, and
the inequalities in brackets indicate that the compulsive LC
behavior caused by the off-ramp happens more frequently at
the lane on the right-hand side than on the left-hand side. This
inequality is analytical for the phenomenon observed in real
traffic,[20] where the LC within two adjacent lanes increases
from the median lane to the shoulder lane at the weaving sec-
tion. The A is the overall intensity of occurrence, in the same
units as Φ , i.e., veh/(h · km). The range of A value is deter-
mined through the experiment in Subsection 2.3. Parameters
β and γ , in units of km−1, are determined so that the curve
shape of function Φramp,l correctly reflects the pattern of off-
ramp compulsive LC. Parameter x0 in units of km is the point
where the LC rate reaches its peak. A test drawing (Fig. 1 with
γ = 1.5, β = 150, and x∗0 = 0.6) demonstrates that the function
curve of Φramp,l is in accordance with what we desire.

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

x

Φ
ra
m
p
/
α
n
A

Fig. 1. Test drawing of Φramp against x.

For the most right-hand side lane (i.e., the one that is ad-
jacent to the auxiliary lane), the value of αn can be determined
through the following derivation. The definition of Φramp,n im-
plies that the integral of Φramp,n with respect to x will be the
total flow rate at which vehicles change to the auxiliary lane,
and since all vehicles intending to leave the main lane must
change to the auxiliary lane at some point before the ramp,
the integral is thus the overall flow rate of leaving through the
off-ramp. On the other hand, we define the overall intensity of
occurrence A as the average flow rate at the off-ramp divided
by the length of the road section. Therefore, the integral of
Φramp,n/A with respect to x should be 1. We can thus deduce
that αn can be obtained by the following expression:

αn = 1/
{∫ x0

0
sech(γ(x− x0))dx

+
∫ 1

x0

sech(β (x− x0))dx
}
, (10)

where the integral terms can be calculated analytically by us-
ing the following formula:∫ x

0
sech(αξ )dξ =

2
α

arctan
(

tanh
(

α

2
x
))

. (11)

2.2. Non-dimensionalization

Let uf be the characteristic speed, ρ jam the characteris-
tic density, and L the characteristic length. Let u∗ = u/uf,
ρ∗ = ρ/ρjam, x∗ = x/L, t∗ = t/(L/uf), a∗ = a/uf, Tr∗ =
Tr/(L/uf), U∗e = Ue/uf, Φ∗free = Φfree/(ρjamuf/L), Φ∗cmpl =

Φcmpl/(ρjamuf/L), and f ∗ = f/(u2
f /L), which are the dimen-

sionless speed, density, length, time, sonic speed, time delay,
equilibrium speed function, free LC source term, compulsive
LC source term, and free LC viscosity term. Substituting these
into Eq. (7), the dimensionless model equations can be ob-
tained as follows (the symbol ∗ is dropped):

∂ρl

∂ t
+ul

∂ρl

∂x
+ρl

∂ul

∂x
= ∑

l′=l±1
Φfree,l′l−Φcmpl,l ,

∂ul

∂ t
+ul

∂ul

∂x
+

a2

ρl

∂ρl

∂x

=
1

Tr
(Ue−u)l + fviscous,l +

ul

ρl
Φcmpl,l ,

Φfree,l′l =C∗1 [ρl′ul′max(ul−ul′ ,0)+ρlul min(ul−ul′ ,0)]
+C∗2 [ρl′max(ρl′ −ρl ,0)+ρl min(ρl′ −ρl ,0)] ,

fviscous,l =
1
ρl

∑
l′=l±1

Φfree,l′l ·


(1−ul), ρl ≤ 0.2,(
− 1

4
−ul

)
, ρl > 0.2,

(12)

where the dimensionless parameters are

C1
∗ = ufLC1, C2

∗ =
ρjamL

uf
C2. (13)

2.3. Empirical study

The parameter A in Eq. (9), according to its definition,
can be estimated by counting the number of vehicles that came
through an off-ramp in a certain period of time on a real road
section. We choose the Guoding Rd. off-ramp on the Shang-
hai Middle Ring Expressway, China, as our observation ob-
ject. This off-ramp is 3.5 km away from the nearest off-ramp
upstream at Guangyue Rd. The traffic between the two off-
ramps is mostly isolated and thus will not be influenced by the
traffic environment outside. It is a four-lane section.

We repeate the experiment three times, each lasting half
an hour. The number of vehicles passing from the off-ramp
is counted and recorded every 5 min. Results are shown in
Table 1. In this table, the maximum value is in boldface and
its corresponding compulsive LC intensity is denoted as Amax.
Let the characteristic length L = 3 km, then Amax values of
the three entries are respectively as follows: 116 veh/(h ·km),
120 veh/(h · km), and 92 veh/(h · km), and for all the entries,
A ∈[40,120] veh/(h · km). Therefore, the upper limit of com-
pulsive LC intensity on any four-lane highway is given as
A≤ 120 veh/(h ·km).
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Table 1. Empirical data for the estimation of A.

Set 1 2015.4.6, Set 2 2015.4.10, Set 3 2015.4.21,
Monday rainy to cloudy Friday sunny Tuesday sunny

Starting at No. of vehicles Starting at No. of vehicles Starting at No. of vehicles

14:13 10 14:13 24 17:42 16
14:18 17 14:18 24 17:47 20
14:23 16 14:23 26 17:52 19
14:28 25 14:28 25 17:57 16
14:33 29 14:33 24 18:02 23
14:38 21 14:38 30 18:07 19

However, traffic conditions may differ from those of this

experiment, depending on the local flow rate, the scale of the

studied off-ramp, the average demand for leaving from the off-

ramp, and how many lanes that section consists of. Therefore,

when using our model for simulation, the value of A should be

determined accordingly with reference to our empirical data.

For example, in the simulation of the traffic on a two-lane road,

the value of A should be half that on a four-lane road, that is,

A ∈[20,60] veh/(h ·km).

3. Numerical simulation method

Now we present a numerical simulation method for the

model to study the off-ramp problem. The model equations

are Eqs. (12), (8), and (9). Hereinafter, a two-lane road sec-

tion is taken in each numerical case, that is, the number of

lanes n = 2.

The finite difference scheme is designed by referring to

Refs. [21] and [22]. Use the forward difference formula for

time derivatives, the backward difference formula for spatial

derivatives with the coefficient of speed, and the forward dif-

ference formula for spatial derivatives with the coefficient of

density, then the scheme will be obtained as follows (subscript

l is omitted):

ρ
n+1
i = ρ

n
i −

∆t
∆x

[un
i (ρ

n
i −ρ

n
i−1)+ρ

n
i (u

n
i+1−un

i )]

+∆t
(

∑
l′ 6=l

Φl′l−Φcompl,l

)n

i
, (14)

un+1
i = un

i −
∆t
∆x

[
un

i (u
n
i −un

i−1)+
a2

ρn
i
(ρn

i+1−ρ
n
i )

]
+∆t

[
1

Tr
(Ue−u)+ fviscous,l +

u
ρ

Φcmpl,l

]n

i
. (15)

(Note: here n represents the number of spatial grids, which is
different from the meaning of the number of lanes, as defined
above.)

When using the discretization scheme for simulation, let
dx = 0.05, dt = 0.005, J = 20, and N = 2000, where J and
N are the total number of spatial grids and temporal steps re-
spectively. Constants are set to be Tr = 0.02, a= 0.4, x∗0 = 0.6,
γ∗ = 15, and β ∗ = 150. According to Subsection 2.1, we set
α2 = 8.6824 and α1 = 0.8682 (assuming that only 10% of the
vehicles in the first lane wish to exit from this off-ramp). Char-
acteristic values are set to be L = 3 km, ρjam = 143 veh/km,
and uf = 105 km/h.

As for the boundary conditions, let all profiles keep un-
changed at the inlet, and use the Neumann condition at the
outlet, then we will have

ρ
n+1
0 = ρ0, un+1

0 = u0, ρ
n+1
J = ρ

n+1
J−1 , un+1

J = un+1
J−1. (16)

4. Case study
Three numerical cases of the off-ramp problem are stud-

ied to demonstrate the reasonability and the applicability in
equilibrium and non-equilibrium traffic of our model. Fig-
ure 2 illustrates the sketch of a two-lane road section with an
off-ramp adopted in these cases.

x/ x/

 

 

lane 1

lane 2

x0=0.6

off ramp

Fig. 2. (color online) Sketch of the off-ramp problem.
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4.1. Case 1: Low-density state

Case 1 is designed to validate the model and the dis-
cretization scheme, and also to study LC influence on the traf-
fic environment. Suppose that traffic density is low on both
lanes, and the speed and density on both lanes are evenly dis-
tributed. The initial conditions are

ρ10 = 0.10, ρ20 = 0.12, u10 = 0.90, u20 = 0.88. (17)

Equilibrium speed Ue is given by the dimensionless
Greenshields speed-density relationship:[23]

Ue(ρ) = 1−ρ. (18)

Calculate the following four conditions:
no LC: C∗1 = 0, C∗2 = 0, A = 0 veh/(h ·km);
pure free LC: C∗1 = 0.25, C∗2 = 1.5, A = 0 veh/(h ·km);
pure compulsive LC: C∗1 = 0, C∗2 = 0, A = 35 veh/(h ·

km);
free + compulsive LC: C∗1 = 0.25, C∗2 = 1.5, A =

35 veh/(h ·km).
Numerical results of the four conditions are drawn in

Fig. 3 to Fig. 6.

0 1 2 3 4 5
0.095

0.100

0.105

0.110

0.115

0.120

lane 1

lane 2

t↪∂x/

pure free LC
pure cmpl LC

free+cmpl

no LC

ρ

Fig. 3. (color online) ρ–t in low density state.

Figures 3 and 4 show how the traffic state evolves against
time at the end of the road section (x = 1). The equilibrium
state is achieved after t = 1.7 (about 2.9 s).

0 1 2 3 4 5
0.875

0.885

0.895

0.905

lane 2

lane 1

t↪∂x/

u

pure free LC

pure cmpl LC

free+cmpl

no LC

Fig. 4. (color online) u–t in the low density state.

Then figures 5 and 6 show the equilibrium traffic states at
t = 5. Three parts with distinct patterns can be found in the
figures.

(i) From x = 0 to x = 0.3, the influence of free LC is
dominant, which makes speeds and densities of the two lanes
converge towards each other, while compulsive LC has little
influence on this part.

0 0.2 0.4 0.6 0.8 1.0
0.095

0.100

0.105

0.110

0.115

0.120

lane 2

lane 1

x↪∂t/

pure free LC
pure cmpl LC

free+cmpl

no LC

ρ

Fig. 5. (color online) ρ–x in low density state.

0 0.2 0.4 0.6 0.8 1.0
0.875

0.880

0.885

0.890

0.895

0.900

0.905

lane 1

lane 2

x↪∂t/

u

pure free LC
pure cmpl LC

free+cmpl

no LC

Fig. 6. (color online) u–x in low density state.

(ii) From x= 0.3 to x= 0.6, compulsive LC starts to affect
traffic. As the influence turns stronger downstream, the speed
of lane 2 drops dramatically and its speed increases, while the
speed and density of lane 1 have similar but slighter changes.
The influence of free LC still exists, but becomes less impor-
tant than that of compulsive LC.

(iii) From x= 0.6 to x= 1, which is the downstream of the
off-ramp, the influence of free LC becomes dominant again,
as no compulsive LC happens there. However, the equilib-
rium state changes due to the influence of the compulsive LC
upstream.

It is shown in this case that our model simulates traffic
with free and compulsive LC well at low density, and the pure
free LC case yields the same results as the low density case
in Ref. [19] (at medium and high density, our results of the
pure free LC case agree with those in Ref. [19] as well). Two
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kinds of LCs show different influence patterns in the traffic
state. The discretization scheme is stable, and the parameters
are well set so as to obtain reasonable results.

4.2. Case 2: Medium- and high-density states

The model (12) should adopt different values of equilib-
rium speed Ue when simulating medium- and high-density
traffic states. In these cases, the dimensionless equilibrium
speed Ue is given by Payne’s function:

Ue = min{1,1.94−6ρ +8ρ
2−3.93ρ

3}. (19)

The initial conditions for medium-density state are

ρ10 = 0.38, ρ20 = 0.40, u10 = 0.60, and u20 = 0.55. (20)

We simulate a free-and-compulsive LC situation with the
model. Let A = 30 veh/(h ·km), C∗1 = 0.25, and C∗2 = 1.5.

Figures 7 and 8 show the equilibrium traffic states at
t = 70. The speed curves of the two lanes intersect at x = 0.25,
after which the speed of lane 2 drops lower than that of lane 1.
In the downstream off-ramp, speed curves of the two lanes
converge. A similar pattern exists in the density curve in
Fig. 8, as the density of lane 2 increases over that of lane 1 after
x = 0.25, and after crossing the off-ramp, the density curves of
the two lanes converge.

0 0.2 0.4 0.6 0.8 1.0
0.32

0.34

0.36

0.38

0.40

lane 2

lane 1

x∂t/

ρ

Fig. 7. ρ–x in medium density state.
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0.70

x↪∂t/

u

lane 2

lane 1

Fig. 8. u–x in medium density state.

The high-density state usually exists in congested urban
traffic, where almost every space available is occupied and the

speeds and densities of the two lanes are very close. Thus the
initial conditions for the high-density state are given as

ρ10 = 0.70, ρ20 = 0.70, u10 = 0.31, and u20 = 0.31. (21)

As traffic becomes congested, the compulsive LC happens less
frequently. Let A = 20 veh/(h ·km).

Figures 9 and 10 show the equilibrium traffic states at
t = 100. The changing patterns of the curves are similar to
those of medium-density traffic, except that the intersection
point changes to x = 0 due to the initial conditions.

ρ
0 0.2 0.4 0.6 0.8 1.0

0.58

0.62

0.66

0.70

x↪∂t/

lane 2

lane 1

Fig. 9. ρ–x in high density state.

0 0.2 0.4 0.6 0.8 1.0
0.31

0.32

0.33

0.34

0.35
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x↪∂t/

u
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Fig. 10. u–x in high density state.

Figures 7–10 show the different influences of free LC
and compulsive LC at the upstream and downstream off-ramp
in the medium-/high-density state. In these states, the initial
speeds and densities of the two lanes are very close. Therefore,
the need for free LC drops down, while the need for compul-
sive LC remains the same. As vehicles move into the auxiliary
lane from lane 2 (compulsive LC behavior), their density will
decrease largely and their speeds will increase. This leads to
a larger speed/density difference between the two lanes, and
then in the downstream off-ramp, the effect of free LC still
survives and drives the speed/density of the two lanes close to
each other.

4.3. Case 3: Non-equilibrium traffic state

Generally speaking, a second-order differential equation
model can simulate the non-equilibrium traffic state well.
Therefore, we design Case 3 to study our model in a non-
equilibrium state simulation. Take the same settings as the
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free + compulsive LC condition in Case 1, except that the inlet
boundary condition (16) is changed into

ρ
n
0 = ρeq,0

(
1+0.15sin

(
2π

Tp
n
))

, un
0 =

ρeq,0

ρn
0

ueq,0, (22)

where ρeq,0 and ueq,0 are the constant entrance boundary con-
dition values in Case 1, and Tp is the dimensionless time period
of the sinusoidal function under the assumption of Tp = 2000.
The simulation results are shown in Figs. 11 and 12. Density
and speed curves at x = 0, x = 0.2, x = 0.4, x = 0.6, and x = 1
are drawn in the same figure for comparison.
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Fig. 11. (color online) ρ–t in non-equilibrium state.
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Fig. 12. (color online) u–t in non-equilibrium state.

It can be seen in the figures that as the phase of the fluc-
tuation at the inlet moves downstream, the amplitude reduces.
This is caused by the free LC, which is in accordance with the
second case from Ref. [19]. On the other hand, at x = 0.4,
x = 0.6, and x = 1 respectively, an overall trend that density
drops and speed increases can be seen, with the scenario at
x = 0.6 being the most evident. This is caused by the compul-
sive LC, which brings down the traffic flow of the road section.
This case validates the applicability of our model in the simu-
lation of non-equilibrium traffic near an off-ramp.

5. Conclusions
In this paper we establish a new second-order contin-

uum traffic model with the consideration of both free LC
and compulsive LC behaviors. For the off-ramp problem, we
give a form of the source term of compulsive LC, and deter-
mine its value range of the parameter by the empirical data
taken from an off-ramp at Shanghai. A discretization scheme
for our model is constructed and applied to three numerical
cases, which show that the proposed model and discretization
scheme can provide reasonable simulations for various traffic
states.

The compulsive LC function model is logically derived
through the inspection of real traffic, however, we are inter-
ested in looking into how this model can be verified and how
the parameters could be determined through empirical data in
the future.

In this paper, only one kind of compulsive LC is dis-
cussed. However, other kinds of compulsive LC behaviors ex-
ist, such as the keep-right-except-to-pass-rule problem: under
certain traffic rules, drivers have to change back to the slow
lane after overtaking the car in front of it by using the quick
lane.[24,25] Such a situation may be simulated by proposing
another suitable Φramp,n term in Eq. (8).
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[16] Kerner B S and Konhäuser P 1993 Phys. Rev. E 48 R2335
[17] Zhang H M 2002 Transport. Res. Part B 36 275
[18] Zhu H and Wu Z 2008 Chin. J. Hydro. 23 301 (in Chinese)
[19] Ko H T, Liu X H, Guo M M and Wu Z 2015 Chin. Phys. B 24 098901
[20] Gan Q J and Wen L J 2015 Transport. Res. Rec. 2490 106
[21] Wu Z 1994 Chin. J. Theor. Appl. Mech. 26 149 (in Chinese)
[22] Wu Z 2006 Chin. J. Theor. Appl. Mech. 38 785 (in Chinese)
[23] Greenshields B, Bibbins J, Channing W and Miller H 1935 Highway

research board proceedings 14
[24] http://highwaypal.com/i95/keep-right-except-to-pass-laws-for-i95-

states/ [2014]
[25] John C http://www.mit.edu/jfc/right.html [2015]

048901-7

http://dx.doi.org/10.3141/1999-09
http://dx.doi.org/10.3141/1999-09
http://dx.doi.org/10.1016/j.trb.2007.10.004
http://dx.doi.org/10.1016/j.trb.2004.12.001
http://dx.doi.org/10.1016/j.trb.2004.12.001
http://dx.doi.org/10.1016/j.trb.2013.06.002
http://dx.doi.org/10.1016/j.trb.2011.05.012
http://dx.doi.org/10.1016/j.trb.2011.05.012
http://dx.doi.org/10.1016/j.trb.2005.04.003
http://dx.doi.org/10.1080/01441640600823940
http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000165
http://dx.doi.org/10.1016/j.trb.2013.11.009
http://dx.doi.org/10.1287/opre.4.1.42
http://dx.doi.org/10.1103/PhysRevE.48.R2335
http://dx.doi.org/10.1016/S0191-2615(00)00050-3
http://dx.doi.org/10.1088/1674-1056/24/9/098901
http://dx.doi.org/10.3141/2490-12
http://lxxb.cstam.org.cn/CN/abstract/abstract140291.shtml
http://lxxb.cstam.org.cn/CN/abstract/abstract141470.shtml

	1. Introduction
	2. Model
	2.1. Derivation
	2.2. Non-dimensionalization
	2.3. Empirical study

	3. Numerical simulation method
	4. Case study
	4.1. Case 1: Low-density state
	4.2. Case 2: Medium- and high-density states
	4.3. Case 3: Non-equilibrium traffic state

	5. Conclusions
	References

